Обечайка.

Обечайка является главным составным элементом корпуса, это наиболее материалоемкий и ответственный узел (деталь) любого химического аппарата.

С точки зрения экономии материала и равномерного распределения напряжений, возникающих в материале стенок от нагрузок, наиболее благоприятной формой для обечайки является сферическая. Сфера обладает наибольшей поверхностью на единицу объема, и при заданном давлении толщина стенки ее оказывается минимальной. Однако изготовление сферических оболочек более сложно и дорого, чем изготовление цилиндрических обечаек. Кроме того, сфера – весьма неподходящая форма для размещения внутренних рабочих устройств аппарата и для организации тока взаимодействующих агентов. Поэтому сферическую форму придают или большим хранилищам для жидкостей и газов, в которых благодаря этому удается уменьшить вес конструкции, или аппаратам, в которых наименьшее отношение их наружной поверхности к объему существенно важно для хорошей работы, как, например, в танках для жидкого кислорода.

Наибольшее распространение в химическом аппаратостроении получили цилиндрические обечайки. Главным их достоинством является простота изготовления и рациональный расход материала. Поэтому при конструировании аппаратов, если это не идет в разрез с какими-либо особыми требованиями, предъявляемыми к аппарату, рекомендуется применять цилиндрические обечайки.

Значительно реже применяются емкостные аппараты, ограниченные не поверхностями вращения, а плоскими стенками. Плоские стенки (коробчатая обечайка) применяются только в аппаратуре, работающей при небольших перепадах давлений. Плоские стенки невыгодны потому, что они плохо сопротивляются действующему на них давлению и расход металла на единицу полезного объема в таких конструкциях бывает более высок. Удельный расход металла на изготовление прямоугольных резервуаров составляет от 90 до 130 кг на 1 м3 емкости, а для цилиндрических от 18 до 50 кг на 1 м3 емкости, т.е. в 3–5 раз меньше, чем для прямоугольных, причем удельный расход в обоих случаях уменьшается с увеличением емкости. Чем больше требуемая емкость, тем более выгодно применение цилиндрических резервуаров по сравнению с прямоугольными.

Такие аппараты применяют для работы при небольших перепадах давлений и обычно используют в качестве кожухов сушилок, погружных холодильников и конденсаторов, корпусов фильтров и тому подобных аппаратов.

Днища.

Днища также являются составными элементами корпусов химических аппаратов. Они, как правило, органически связаны с обечайкой аппарата и изготовляются из того же материала.

В сварной и паяной аппаратуре днища обычно привариваются или припаиваются к обечайке; в кованой и литой аппаратуре из пластичных материалов они либо представляют собой одно целое с обечайкой, либо также свариваются с ней; в литой аппаратуре из хрупких материалов днище всегда выполняется заодно с обечайкой. Форма днища определяется сопрягаемой с ним формой обечайки, химико-технологическими требованиями, предъявляемыми к тому или иному аппарату, давлением среды в нем, конструктивными соображениями и бывает эллиптической, сферической, конической и плоской.

Сфера – это идеальная форма для днища, т.к. в сферической оболочке не возникают изгибающие напряжения, кроме того она наиболее выгодна в отношении хорошего использования материала.

Однако такие днища достаточно трудоемки, они имеют высокую стоимость, и увеличивают длину аппарата. Сферические днища также неудобны для размещения штуцеров и сложны в изготовлении.

Наиболее широко используются эллиптические днища, которые имеют следующие преимущества: простота изготовления, рациональное расходование конструкционного материала, хорошая сопротивляемость давлению среды.

Плоские днища применяются в основном в аппаратах, работающих при атмосферном давлении. Они представляют собой круглые пластины (отбортованные или неотбортованные), привариваемые по контуру к обечайке корпуса или присоединяемые другими способами.

Плоские днища просты по конструкции, для их изготовления не требуется специального оборудования. Однако по прочности они наименее надежны, поэтому их используют в конструкциях тонкостенных аппаратов, работающих под налив, при атмосферном или незначительном избыточном давлении, а также для люков и заглушек в аппаратах, нагруженных значительным избыточным давлением.

По экономических и технологическим соображениям плоские днища (крышки) применяют также в конструкциях толстостенных аппаратов высокого давления.

Конические днища применяются в 3-х случаях: 1) при необходимости удалять из аппаратов сыпучие материалы или жидкости с большим содержанием твердых веществ; 2) для лучшего распределения газа или жидкости по всему сечению аппарата и 3) в качестве конфузоров и диффузоров для постепенного изменения скорости жидкости или газа, что необходимо для уменьшения гидравлического сопротивления аппаратов.

Крышки.

В отличие от днищ, неразъемно соединенных с обечайкой корпуса, крышки могут изготавливаться либо совместно с аппаратом, либо в виде съемных частей. Применение отъемных крышек для аппаратов больших диаметров считается нецелесообразным, прежде всего из-за повышенного расхода металла, трудоемкости изготовления фланцев большого диаметра и их уплотнения. Возможность внутреннего осмотра и чистки аппарата, а также сборки и разборки мешалок и внутренних устройств обеспечивается в этих случаях путем установки люков достаточно большого размера. Конструктивно крышки выполняются плоскими, сферическими или эллиптическими.

 

Фланцевые соединения служат для соединения отдельных частей аппаратов: съемных крышек, люков и др. и трубопроводов. В аппаратах химических производств они являются одним из наиболее распространенных и ответственных разъемных соединений. Правильный их выбор в значительной степени предопределяет надежную работу сосудов и аппаратов.

Фланцевые соединения, применяемые в химической аппаратуре, должны отвечать следующим требованиям:

1) обеспечивать герметичность соединения при данных рабочих давлении и температуре;

2) быть прочными;

3) позволять быструю и многократную сборку и разборку соединения;

4) быть технологичными, обеспечивающими возможность их массового изготовления;

5) быть достаточно дешевыми.

По конструкции и способу соединения со штуцером или корпусом различают следующие основные виды фланцев:

– фланцы, отлитые или откованные заодно с трубой или обечайкой;

– плоские приварные фланцы;

– фланцы с утолщением у основания («с шейкой»), привариваемые к трубе в стык;

– свободные фланцы на отбортовке и бурте;

– фланцы на резьбе.

 

 

 

Форма фланцев по преимуществу круглая. Она удобна для изготовления заготовки и механической обработки. Фланцы труб небольшого диаметра иногда делают квадратными. Число болтов фланцев должно быть кратно четырем. Исключением являются овальные фланцы трубопроводов высокого давления. По весу они получаются не менее тяжелыми, чем круглые при тех же Dу и ру. Болты для овальных фланцев делаются в 1,4 раза большего диаметра, чем болты круглых фланцев с четырьмя отверстиями для того, чтобы сохранить необходимую площадь сечения болтов.

Фланцы всегда работают в паре или с другим фланцем, или с заглушкой, имеющей те же присоединительные размеры.

Для крепления фланцевого соединения при давлении до 1,6 МПа и температуре до 200 °С применяют болты, при более высоких температурах и давлениях – шпильки, снабженные гайками с обеих сторон, т.к. у головки болтов возникают очень значительные местные напряжения. Шаг по болтовой окружности обычно принимают равным (2,5¸4)d (d – наружный диаметр резьбы).

Уплотнение фланцевых соединений достигается сжатием с определенной силой, обеспечивающей герметичность, уплотняемых поверхностей

непосредственно друг с другом (беспрокладочное соединение) или через посредство расположенных между ними прокладок из более мягких материалов.

Наибольшее распространение имеет прокладочное уплотнение, применяемое в соединениях низкого, среднего и высоких давлений, а также при вакууме. В таких соединениях уплотнение достигается тем, что значительно более мягкая, чем основной материал фланца, прокладка деформируется и заполняет все неровности на уплотнительной поверхности фланцев.

Беспрокладочные соединения применяются значительно реже, как правило, при повышенных давлениях и в тех случаях, когда невозможно применить прокладки по температурным или каким-либо другим условиям. В этом случае уплотнение достигается за счет узкого пояска деформации материала, возникающего в месте касания под действием осевых сил. Уплотнения с упругой деформацией обеспечивают многократную сборку и разборку. Однако они обычно требуют дополнительной шлифовки уплотняемых поверхностей почти после каждой разборки. Необходимость достаточно сложной и дорогостоящей обработки уплотняемых поверхностей является главным недостатком беспрокладочных соединений, поэтому там, где это допускается по температурным, коррозионным и другим условиям, для обеспечения лучшей герметичности и уменьшения необходимой для этого силы сжатия уплотняемых поверхностей, помещается прокладка.

Люки и лазы

 

Люки служат для осмотра аппарата, монтажа и демонтажа внутренних устройств, загрузки сырья и очистки.

Конструкции люков и лазов зависят от условий работы и давлении в аппарате. Если лазом пользуются редко, то крышку делают в виде заглушки, поставленную на бобышке или коротком штуцере с фланцем . При необходимости частого открывания крышку делают на откидных болтах , которые отвертываются значительно быстрее, чем обыкновенные, а люки и лазы, которые необходимо открывать несколько раз в день, делают с поворотной скобой, на конец которой накидывают петлю .  При закрывании люка скобу подводят под вилку и, вращая ворот, плотно прижимают крышку люка к горловине, так как при вращении ворота натяжной винт поднимает скобу и, опираясь на нее, давит на крышку. Люки со скобой очень удобны в работе при необходимости загрузки сыпучих продуктов в аппарат, однако они очень ненадежны, так как повреждение любого узла, нагруженного давлением, ведет к разрушению всего люка. Поэтому их снимают с производства.

Для облегчения перемещения тяжелых крышек лазов, а также из соображений безопасности крышки лазов делают на шарнире или подвешивают на укосине.

Опоры 

Опоры аппаратов служат для установки аппаратов на фундаменты и несущие конструкции.

При установке вертикальных аппаратов на полу или на фундаментах применяют опорные лапы (стойки), при подвеске их между перекрытиями – боковые.

Сварная лапа (рис. 7, б) состоит из двух вертикальных косынок и приваренного к ним снизу основания с отверстиями для крепления оборудования к фундаменту и отжимными болтами, которые служат для точной установки машин и аппаратов при монтаже. Лапы приваривают к боковым стенкам корпуса аппарата. При незначительной толщине стенки под лапы приваривают накладные листы.

Стойки приваривают к днищам вертикальных аппаратов (рис. 7, а). Стойки также состоят из двух вертикальных косынок и приваренного к ним снизу основания. В резьбовом отверстии основания установлен регулировочный винт, предназначенный для нивелирования. Второе отверстие служит для крепления аппарата к фундаменту при помощи анкерных болтов. При небольшой толщине днища над стойками также приваривают накладные листы.